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Abstract. The steady state properties of a noise-driven bistable system are investigated when there are
two different kinds of time delays existed in the deterministic and fluctuating forces respectively. Using the
approximation of the probability density approach, the delayed Fokker-Planck equation is obtained. The
stationary probability distribution (SPD) and the variance of the system are derived. It is found that the
time delay τ in the deterministic force can reduce the fluctuations while the time delay β in the fluctuating
force can enhance the fluctuations. Numerical simulations are presented and are in good agreement with
the approximate theoretical results.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 02.30.Ks Delay
and functional equations – 02.50.Ey Stochastic processes

1 Introduction

In recent years, the effects of time delays on stochas-
tic dynamical systems have attracted much attention in
various fields, such as laser systems with optical delayed
feedback [1–8], stochastic resonance with delayed inter-
actions [9–12], chemical surface reactions [13], population
dynamics [14], the spread of the infectious diseases [15],
etc. In these complex systems, time delay plays an impor-
tant role in the dynamical properties of these systems. The
time delay usually arises from the finite transmission time
of the matter, energy and information. In many cases, the
time delay can be regarded as a useful description of the
systems involving a reaction chain or a transport process.

For stochastic dynamical systems without time de-
lay, the steady state and dynamical properties have been
widely investigated [16–28]. More recently, the effects of
the time delay existing in the deterministic force of a
stochastic system have been discussed [29–36]. However,
the time delay appeared in both deterministic and fluctu-
ating forces needs to be investigated. The main problem
caused by the time delay in the stochastic system is that
the appropriate analytical result is difficult to be derived
due to the non-Markovian process appeared in the system.

In this paper, the steady state properties of a stochas-
tic bistable system are investigated when two different
kinds of time delays exist in the deterministic and fluctu-
ating forces respectively. In Section 2, the approximation
of the probability density approach is applied to obtain the
delayed Fokker-Planck equation. In Section 3, the analyt-
ical expressions of the stationary probability distribution
and the variance of the system are derived. The effects
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of the two different kinds of time delays are discussed.
In Section 4, the numerical simulations are presented and
compared with the analytical results. A discussion con-
cludes the paper.

2 Theoretical analysis

For a delayed stochastic differential equation, some ap-
proximation methods need to be applied in order to obtain
analytical results. One of the approximations is the proba-
bility density approach. If this approximation is employed,
the non-Markov process can be reduced to a Markov pro-
cess.

2.1 Delayed Fokker-Planck equation

A one-dimensional stochastic delayed differential equation
driven by two coupled white noise terms Γ (t) and η(t)
follows the Langevin equation

dx(t)
dt

= h(x(t), x(t − τ)) + g(x(t), x(t − β))Γ (t) + Qη(t).

(1)
Where the parameter τ denotes the delay time in the de-
terministic force while β denotes the delay time in the
random force, Q is a constant, Γ (t) and η(t) are Gaussian
white noises with zero mean and correlations

〈Γ (t)〉 = 〈η(t)〉 = 0,

〈Γ (t)Γ (t′)〉 = 2P ′δ(t − t′),
〈η(t)η(t′)〉 = 2Pδ(t − t′),

〈Γ (t)η(t′)〉 = 〈Γ (t′)η(t)〉 = 2λ
√

P ′Pδ(t − t′). (2)
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Here P ′ and P are the intensities of the noise terms Γ (t)
and η(t) respectively, λ denotes the coupling strength be-
tween two noise terms.

If the approximation of the probability density ap-
proach is employed [29,32–34], equation (1) can be rewrit-
ten as

dx(t)
dt

= heff(x(t)) + geff(x(t))Γ (t) + Qη(t), (3)

here,

heff(x) =
∫ +∞

−∞

∫ +∞

−∞
h(x, xτ )

× P (xτ , t − τ ; xβ , t − β|x, t) dxτ dxβ ,

geff(x) =
∫ +∞

−∞

∫ +∞

−∞
g(x, xβ)

× P (xτ , t − τ ; xβ , t − β|x, t) dxτ dxβ . (4)

In equation (4), P (xτ , t − τ ; xβ , t − β|x, t) denotes the
conditional distribution of x(t). Thus, the stochastic de-
layed differential equation can be approximately reduced
to the ordinary stochastic equation. The non-Markovian
process induced by the time delays can be transformed to
Markovian process. Meanwhile, equation (3) can be equiv-
alently transformed into a stochastic differential equation

dx(t)
dt

= heff(x) + Geff(x)ε(t), (5)

with

〈ε(t)ε(t′)〉 = 2δ(t − t′),

Geff(x) =
√

P ′g2
eff + 2λ

√
P ′PgeffQ + PQ2. (6)

From equations (5) and (6), the delayed Fokker-Planck
equation corresponding to equations (1) and (2) can be
derived as

∂P (x, t)
∂t

= − ∂

∂x
[A(x)P (x, t)] +

∂2

∂x2
[B(x)P (x, t)], (7)

with

A(x) = heff(x) + Geff(x)
dGeff(x)

dx
,

B(x) = G2
eff(x). (8)

Here P (x, t) = 〈δ(x − x(t))〉 denotes the probability den-
sity of the stochastic process. Consequently, the stationary
probability distribution (SPD) can be obtained

Pst(x) =
N

Geff(x)
exp

∫ x

−∞
dx′ heff(x′)

G2
eff(x′)

, (9)

where N is the normalization constant, Geff(x) and heff(x)
can be evaluated from equations (4) and (6).

2.2 Two different kinds of time delays in a bistable
system

The approximate theory can be applied to a bistable sys-
tem. For a time-delayed bistable system with coupling be-
tween additive and multiplicative noise terms, the dimen-
sionless Langevin equation follows

dx(t)
dt

= x(t − τ) − x3(t) + x(t − β)Γ (t) + η(t), (10)

here Γ (t) is the multiplicative noise, η(t) is the additive
noise, both Γ (t) and η(t) are the same as that in equa-
tion (2). Comparing equations (10) and (1), the following
relations are obtained

h(x(t), x(t−τ)) = xτ −x3; g(x(t), x(t−β)) = xβ ; Q = 1.

(11)

Since xτ and xβ are independent variables, P (xτ , t −
τ ; xβ , t − β|x, t) can be given by

P (xτ , t−τ ; xβ , t−β|x, t) = P (xτ , t−τ |x, t)P (xβ , t−β|x, t)

=

√
1

2πG2(x, x)τ

√
1

2πG2(x, x)β

× exp
(
− [xτ − (x + (x − x3)τ)]2

2G2(x, x)τ
− [xβ − (x + xβ)]2

2G2(x, x)β

)
.

(12)

The normalized conditional distribution function P (xτ , t−
τ |x, t) and P (xβ , t−β|x, t) can be expressed as follows [37]

P (xτ , t − τ |x, t) =

√
1

2πG2(x, x)τ

× exp
(
− [xτ − (x + h(x, x)τ)]2

2G2(x, x)τ

)
,

P (xβ , t − β|x, t) =

√
1

2πG2(x, x)β

× exp
(
− [xβ − (x + g(x, x)β)]2

2G2(x, x)β

)
,

(13)

where h(x, x) = x − x3, g(x, x) = x, G2(x, x) = P ′x2 +
2λ

√
P ′Px + P . After the integration, one has

heff(x) =
∫ +∞

−∞

∫ +∞

−∞
h(x, xτ )

× P (xτ , t − τ ; xβ , t − β|x, t) dxτ dxβ

= (1 + τ)(x − x3),

geff(x) =
∫ +∞

−∞

∫ +∞

−∞
g(x, xβ)

× P (xτ , t − τ ; xβ , t − β|x, t) dxτ dxβ

= (1 + β)x, (14)

and

Geff(x) =
√

P ′(1 + β)2x2 + 2λ
√

P ′P (1 + β)x + P . (15)
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Fig. 1. The stationary probability distribu-
tion function Pst(x) is plotted as a function of
x, τ , and β respectively. The parameters are
dimensionless and are chosen as P ′ = P =
0.1, λ = 0. (a) Pst(x) as a function of x and τ
with β = 0. (b) Pst(x) as a function of x and
β with τ = 0.

3 Stationary properties in a bistable system

The effects of the two different time delays can be evalu-
ated from the stationary probability distribution function
Pst(x) and the variance σ2

x of the variable x of the bistable
system. The stationary probability distribution function
and the variance can be calculated from equation (9).

3.1 Stationary probability distribution

The stationary probability distribution (SPD) can be ex-
pressed by

Pst(x) =
N

Geff(x)
exp

[−φ(x)
P ′

]
, (16)

here, φ(x) is the rectified potential function. From equa-
tions (9), (14) and (15), φ(x) reads

φ(x) = κ1x + κ2x
2 + κ3 arctan

[P ′(1 + β)x + λ
√

P ′P ]√
P ′P (1 − λ2)

+ (κ4 ln [P ′(1 + β)2x2 + 2λ
√

P ′P (1 + β)x + P )]),
(17)

with

κ1 =
−2λ

√
P ′P

P ′(1 + β)3
(1 + τ), κ2 =

1 + τ

2(1 + β)2
,

κ3 =
λ(1 + τ)[P ′(1 + β)2 + P (3 − 4λ2)]

P ′(1 + β)3
√

(1 + β)2(1 − λ2)
,

κ4 =
(1 + τ)[4Pλ2 − P − P ′(1 + β)2]

2P ′(1 + β)4
. (18)

If there is no time delay with τ = β = 0, equation (16) is
reduced to the previous expression obtained in a bistable
system [21]. The three dimensional curves of the station-
ary probability distribution (SPD) Pst(x) as a function of
the variable x are plotted in Figure 1 when the delay time
τ and β are varied.

The SPD as a function of the variable x and delay
time τ is plotted in Figure 1a. From Figure 1a, it is seen
that the SPD of the system exhibits a symmetric bimodal
structure when τ is increased. The height of the two peaks
and the depth of the valley increase when τ is increased.
The position of the two peaks shifts slightly away from
x = ±1. The position of the valley is kept at x = 0.

The SPD as a function of the variable x and the delay
time β is plotted in Figure 1b. From Figure 1b, it is seen
that similar structure as that in Figure 1a is obtained.
The height of the two peaks and the depth of the valley
decrease when the delay time β is increased. The position
of the two peaks shifts closer to x = 0 while the position
of the valley is still kept constant at x = 0. It is clear that
the effect of β on SPD is contrary to that of τ . That is,
the effect of time delay in deterministic force is opposite
to that in fluctuation force.

3.2 Variance of variable x

From the stationary probability distribution of equa-
tion (16), the nth moment of the variable x can be calcu-
lated as follows

〈xn〉 =
∫ +∞

−∞
xnPst(x)dx. (19)

Then the variance can be given by

σ2
x = 〈x2〉 − 〈x〉2

=
∫ +∞

−∞
x2Pst(x)dx −

(∫ +∞

−∞
xPst(x)dx

)2

. (20)

The variance can be obtained by numerical integration of
equation (20). The three dimensional curves of the vari-
ance σ2

x are plotted in Figure 2 as a function of the mul-
tiplicative noise intensity P ′ when the delay time τ and β
are varied.

The variance σ2
x as a function of the delay time τ and

multiplicative noise intensity P ′ is plotted in Figure 2a.
From Figure 2a, it is seen that the variance increases
monotonously when P ′ is increased. It decreases mono-
tonically when τ is increased. It is clear that multiplica-
tive noise P ′ can enhance the fluctuation while the delay
time τ can suppress the fluctuation in a delayed bistable
system.

The variance σ2
x as a function of the delay time β

and the multiplicative noise intensity P ′ is plotted in Fig-
ure 2b. From Figure 2b, it is seen that the variance in-
creases monotonically when both P ′ and β are increased.
The delay time β in the fluctuation force can enhance the
fluctuation in the system. For small value of P ′, σ2

x is in-
creased slowly with β. While for large value of P ′, σ2

x is in-
creased very fast with β. Comparison of Figures 2a and 2b
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Fig. 2. The variance σ2
x is plotted as a func-

tion of τ, β, and P ′ respectively. The pa-
rameters are dimensionless and are chosen as
P = 0.3, λ = 0. (a) σ2

x as a function of τ and
P ′ with β = 0. (b) σ2

x as a function of β and
P ′ with τ = 0.

Fig. 3. The variance σ2
x is plotted as a func-

tion of τ, β, and λ respectively. The param-
eters are dimensionless and are chosen as
P ′ = P = 0.5. (a) σ2

x as a function of λ and
τ with β = 0. (b) σ2

x as a function of λ and
β with τ = 0.

Fig. 4. The numerical simulation of the
stationary probability distribution function
Pst(x) is plotted as a function of x when τ
and β are varied respectively. The symbols
represent the numerical simulations and the
solid lines represent the approximate analyti-
cal results. The parameters are dimensionless
and are chosen as P ′ = P = 0.1, λ = 0. (a)
Pst(x) as a function of x when β = 0 and
τ = 0 (◦); 0.1 (•); 0.2 (�). (b) Pst(x) as a
function of x when τ = 0 and β = 0 (◦);
0.1 (•); 0.2 (�).

shows that the effect of β on the variance is opposite to
that of τ .

The three dimensional curves of the variance σ2
x are

plotted in Figure 3 as a function of the coupling strength λ
between the additive and multiplicative noise terms when
the delay time τ and β are varied.

The variance as a function of the coupling strength λ
and delay time τ is plotted in Figure 3a. From Figure 3a,
it is seen that the maximum value of the variance σ2

x is
located at λ = 0. The variance decreases symmetrically at
two sides of λ = 0. When τ increases, the height of the
peak is decreased while the position of the peak remains
at λ = 0.

The variance as a function of the coupling strength λ
and delay time β is plotted in Figure 3b. From Figure 3b,
it is seen that the structure of σ2

x is similar to that shown
in Figure 3a. The height of the peak in σ2

x is increased
when β is increased.

From Figures 2 and 3, it is clear that the delay time
τ in deterministic force can suppress the fluctuation while
the delay time β in the fluctuation force can enhance the
fluctuation in a bistable system. The delay time β plays a

more important role than τ in the fluctuation of a bistable
system.

4 Numerical simulation

To check the validity of the approximation method of
the probability density approach in a bistable system,
the numerical simulation is employed. The simulation can
be performed by integrating the stochastic time-delayed
Langevin equation (10). The Box-Mueller algorithm is
used to generate Gaussian noise. Using Euler procedure,
the time-discrete numerical data are calculated with the
integration step of ∆t = 0.005. An ensemble of N = 105

realizations of x is obtained from equation (10) by nu-
merical calculations. For each realization of x the cycle is
repeated for 1000 times. Accordingly, the stationary prob-
ability distribution Pst(x) and the variance σ2

x can be ob-
tained.

The results of numerical simulations of the SPD as a
function of x are plotted in Figure 4 when the time de-
lays τ and β are varied respectively. In Figure 4a, Pst(x)
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Fig. 5. The numerical simulation of the vari-
ance σ2

x is plotted as a function of τ , β and λ
respectively. The symbols represent the nu-
merical simulations and the solid lines rep-
resent the approximate analytical results. (a)
σ2

x as a function of τ when λ = β = 0, P = 0.3
and P ′ = 0.2 (◦); 0.25 (•); 0.3 (�). (b) σ2

x as
a function of β when λ = τ = 0, P = 0.3
and P ′ = 0.2 (◦); 0.25 (•); 0.3 (�). (c) σ2

x as
a function of λ when P ′ = P = 0.5, β = 0,
and τ = 0 (◦); 0.3 (•); 0.5 (�). (d) σ2

x as a
function of λ when P ′ = P = 0.5, τ = 0, and
β = 0 (◦); 0.3 (•); 0.5 (�).

is plotted as a function of x when τ is varied. While in
Figure 4b, Pst(x) is plotted as a function of x when β is
varied. From Figure 4, it is clearly seen that the approxi-
mate theoretical results of the SPD are in good agreement
with the numerical simulations.

The results of the numerical simulations of the variance
σ2

x are plotted in Figure 5 as a function of τ , β and the
coupling strength λ, respectively. In Figures 5a and 5b, σ2

x

is plotted as a function of τ and β when the multiplicative
noise intensity P ′ is varied. From Figures 5a and 5b, it is
seen that the approximate theoretical results are slightly
higher than the numerical simulations. For small values of
τ and β, i.e., for small time delay, the approximate theoret-
ical results are consistent with the numerical simulations.
However, the deviation becomes large when τ and β are
increased. In Figures 5c and 5d, σ2

x is plotted as a func-
tion λ when τ and β are varied. From Figures 5c and 5d,
it is clear that excellent agreement between approximate
theory and numerical computation is obtained.

5 Conclusion

The steady state properties of a noise-driven bistable sys-
tem are investigated when there are two different kinds
of time delays existed in the deterministic and fluctuating
forces respectively. Using the approximation of the prob-
ability density approach, the non-Markovian process in-
duced by the time delays is transformed to the Markovian
process. The approximate delayed Fokker-Planck equation
is obtained. The analytical expressions of the stationary
probability distribution and the variance are derived.

The effects of the two time delays are different. It is
found that the time delay τ in the deterministic force can
increase the height of the peaks in SPD while the time
delay β in the fluctuating force can decrease the height of
the peaks in SPD. That is, the delay time τ can suppress
while β can enhance the fluctuation. The different effects
of the two time delays in the system is mainly due to the
different forms of their existence. One appears in the de-
terministic force while another appears in the fluctuation
force. Numerical simulations are in good agreement with
the approximate theoretical results.

The financial support from the Natural Science Foundation
of Jiangsu Province (Grant No. BK2001138) is gratefully ac-
knowledged.
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